ON THE STRUCTURE OF CYCLOPENTADIENYL DERIVATIVES OF NONTRANSITION METALS OF PERIODS V AND VI

A.N.Nesmeyanov, L.A.Fedorov, R.B.Materikova, E.I.Fedin and N.S.Kochetkova

Institute of Organo-Element Compounds of the USSR Academy of Sciences, Moscow

(Received in UK 22 May 1968; accepted for publication 29 May 1968)

Chemists are not agreed on the nature of the cyclopentadienyl - metal ((Cp-M) bond in nontransition metal compounds of periods V and VI. Some chemists believe them to be & -bonded (structure I, refs 1,2), others consider some of them as ion derivatives (structure II, refs 3,4), still others suggest the existence of " \mathcal{T} -coordination" (sandwich structure III, refs 5,6,7).

The third alternative was first proposed by E.Fischer (5,9). We have substantiated it for Cp-Tl (8) and Cp-Hg - compounds (10,11).

The sharp singlet for Cp-protons in the proton magnetic resonance (PMR) spectrum of Cp_Ng is usually explained by a fast migration of the C-M bond, although even at -%C no splitting of the proton signal (in THF) is observed (11) **. If the rate of this migration is so high, then the life period of the C-Hg bond is so short ($\tau <$ 0.01 sec) that no spin-spin coupling of $J_{\rm Hg}199_{-C-H}$ can be observed in the PMR spectrum

^{*} The splitting of this signal at -70°C in liquid SO₂ (12) deserves special consideration.

We did however find one pair of singlet satellites (Table I and Fig.1b) whose sharpness even increased with decreasing temperature. For structure I one would expect an opposite temperature effect with in the limit three pairs of multiplet satellites arising from the $Hg^{199}-C_1-H$, $Hg^{199}-C_1-C_2-H$, $Hg^{199}-C_1-C_2-G_3-H$ coupling. Using a spectrum accumulator developed by B.A.Kvassov (13) we succeeded in observing satellites from the $C^{13}-H^1$ coupling in the form of one pair of signals similar in shape and splitting to those in benzene (Table I and Fig.1 a), whereas for I one would again expect multiplet satellites or, for very fast migration, one pair of signals but with $\int \sim 150$ c/s taking into account the statistical weight of C atoms in sp^2 and sp^3 hybridisation states (14,15).

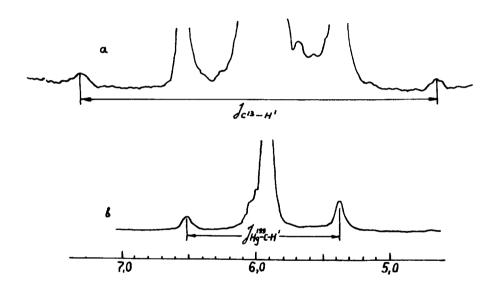


Fig. 1

PMR spectrum of $(C_5H_5)_2Hg$ in acetone was taken using an accumulator of weak signals (100 passages)

We have also studied the PMR spectra of $PhHgCH_3$ (IV) and

Compound	: Solvent	t°C	Ј _{нg} 199_с-н : (с/в)	7c ¹³ -H (c/s)	: Width of the main signal of the C ₅ H ₅ group (c/s)
(C5H5)2Hg	CDC13	34	66.0	-	1.9
Idem	acetone	34	68.9	159 ± 1	1.7
Idem	THF	34	66.7	161 <u>+</u> 1 *	2.6
Idem	Idem	0	69.2	-	1.9
Idem.	Idem	-40	71.1	-	1.5
C ₅ H ₅ H ₈ Cl	THF	0	115.2		2,4
Idem	Idem	-30	119.0	-	1.5

Table I

PMR spectral parameters of some compounds

CpHgCH3 (V or VI) **

and obtained the following results: R = Ph: δ_{CH_3} 0.60 p.p.m., $J_{Hg}^{199}_{C-H} = 109$ c/s (cf.16: δ_{CH_3} 0.55 p.p.m., $J_{Hg}^{199}_{C-H} = 109$ c/s); R = Cp: δ_{CH_3} - 0.35 p.p.m. at 34 in CHCl₃ (cf.16: (CH₃)₂Hg δ_{CH_3} 0.27 p.p.m.)

It will be seen from Fig.2 below that the resulting data favour structures IV and VI. The spectrum of the second compound revealed next to the CH₃ signal (in the high field) a less intensive broad signal assigned to the Hg¹⁹⁹-C-H coupling in CH₃HgI molecules. An approximate calculation (17,18) gave the following values for the CH₃ proton shift for IV and VI respectively: 0.33 p.p.m. to the low field and 0.42 p.p.m. to the high field. With structure

^{*} One satellite was observed only - in the low field (from the main signal)

3756 No.34

V one would expect a shift to the low field because the effects of Cp- and Ph-substituents on the shielding of CH₃ protons are similar under these conditions (19,20).

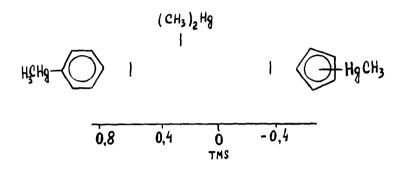


Fig.2
Shielding of CH₃-protons in RHgCH₃

The same tendencies in chemical shifts of CH_3 -protons were found to take place in asymmetric methyl-phenyl and methyl-cyclopentadienyl compounds of Sn^{IV} and Pb^{IV} (21,22,23,24).

The comparison of spin-spin coupling constants J_{M-C-H} in methyl and cyclopentadienyl compounds of ${\rm Hg}^{II}$ and ${\rm Sn}^{IV}$ (Table II) shows a considerable decrease in J_{M-C-H} for the case of cyclopentadienyl derivatives.

We suppose that this fact also favours a sandwich structure for these Cp - compounds. It indicates some decrease in the overlapping of either the Hg^{II} -sp-orbital or the Sn^{IV} -sp³-orbital with the p-orbitals of each C-atom as compared with ordinary localised two-centered G-bonding $C_{(sp^3)}$ - $M_{(sp,sp^3)}$. The possibility of overlapping of the metal valent orbital with the five C-p-orbitals simultaneously appears however to lead to a gain in

	Table II							
Comparison	of spin-spin coupling constants $\boldsymbol{J}_{\boldsymbol{M}-\boldsymbol{C}-\boldsymbol{H}}$ in							
methyl and	cyclopentadienyl compounds of Hg and Sn.							

	: Metal :hybridisa- : tion	$R = CH_3$		$R = C_5 H_5$		
		Solvent	^Ј М-С-Н (с/s)	Solvent	: J _{M-C-H} : (c/s)	
R ₂ Hg ¹⁹⁹	sp	CDC13	101 *	CDC13	66,0	
R ₄ Sn ¹¹⁹	sp ³	CDC13	54,3 XXX	cs	26,9 300	

¥ see 16; ₩₩ see 25; ₩₩₩ see 22.

energy because of the "aromatisation" of the whole molecule. The size of valent electron orbitals of the metals of periods V and VI is large enough to improve the chance of such " π -overlapping" and seems to favour the exclusion of the σ -structure I in the solvents under investigation over a wide range of temperatures, whereas the smaller size of these orbitals for the II - IV period metals enable σ - σ - rearrangements of the σ - Cp-M σ - T-Cp-M type to take place with a small change in temperature (26,27).

REFERENCES

- G.Wilkinson and T.S.Piper, <u>J.Inorg.Nucl.Chem.</u>, <u>2</u>, 32 (1956); ibid. <u>3</u>, 104 (1956).
- 2. J.M.Birmingham, <u>Adv.Organomet.Chem</u>., 2, 365 (1964).
- F.A.Cotton and L.T.Reynolds, <u>J.Am.Chem.Soc.</u>, <u>80</u>, 269 (1958).
- 4. M.D.Rausch and J.M.Birmingham, Ann.N.Y.Acad.Sci., 125, 43 (1965).
- 5. E.O.Fischer and H.P.Hofmann, Angew. Chem., 69, 639 (1957).
- 6. S.Shibata, L.S.Bartell and R.M.Gavin, <u>J.Chem.Phys.</u>, <u>41</u>, 717 (1964).
- 7. A.Almenningen, A.Haaland and T.Motzfeld, J.Organomet.Chem., 7, 97 (1967).
- A.N.Nesmeyanov, R.B.Materikova, E.I.Fedin, N.S.Kochetkova, P.V.Petrovsky,
 L.A.Fedorov and E.V.Leonova, <u>Doklady Akademii Nauk SSSR</u>, <u>177</u>, 586 (1967).

- 9. E.O. Fischer and U. Piesbergen, Z. Naturforsch., 11b, 758 (1956).
- 10. G.G.Dvoryantseva, K.F.Turchin, R.B.Materikova, Yu.N.Sheinker and A.N.Nesmeyanov, Doklady Akademii Nauk SSSR, 166, 868 (1966).
- 11. A.N.Nesmeyanov, G.G.Dvoryantseva, N.S.Kochetkova, R.B.Materikova and Yu.N.Sheinker, <u>Doklady Akademii Nauk SSSR</u>, <u>159</u>, 847 (1964).
- 12. E. Maslowsky and K. Nakamoto, Chem. Comm., 1968, (5), 257.
- 13. B.A.Kvassov, Radiospectroscopiya, vip.5, str.120, P.G.U., Permj (1968).
- 14. N.Muller and D.E.Pritchard, J.Chem.Phys., 31, 768 (1959).
- 15. R.M.Lynden-Bell and N.Sheppard, Proc. Roy. Soc., (L) A269, 385 (1962).
- 16. M.D.Rausch and J.R.Van Wazer, Inorg.Chem., 3, 761 (1964).
- 17. C.E. Johnson and F.A. Bovey, <u>J. Chem. Phys.</u>, <u>29</u>, 1012 (1958).
- 18. D.G.Farnum and C.F.Wilcox, J.Am.Chem.Soc., 89, 5379 (1967).
- 19. J.Pople, V.Schneider and G.Bernschtein, "NMR spectra of high resolution", Translated into Russian, Moscow, 1962.
- 20. J. Brandt and G. Eglinton "Use of Spectroscopy in Organic Chemistry", Translated into Russian, Moscow, 1967.
- 21. H.P.Fritz and K.-E.Schwarzhans, Chem.Ber., 97, 1390 (1964).
- 22. L.D.Dave, D.F.Evans and G.Wilkinson, J.Chem.Soc., 1959, 3684.
- 23. K.Sisido, T.Miyanisi, K.Nabika and S.Kozima, <u>J.Organomet.Chem.</u>, <u>11</u>, 281 (1968).
- 24. M.P.Brown and D.E.Webster, <u>J.Phys.Chem.</u>, <u>64</u>, 698 (1960).
- 25. J.R.Holmes and H.D.Kaesz, <u>J.Am.Chem.Soc</u>., <u>83</u>, 3904 (1961).
- 26. G.M.Whitesides and J.S.Fleming, <u>J.Am.Chem.Soc</u>., <u>89</u>, 2855 (1967).
- 27. H.P.Fritz and C.G.Kreiter, <u>J.Organomet.Chem</u>., 4, 313 (1965).